Author:
CRUZ ANDERSON,VARANDAS PAULO
Abstract
We contribute to the thermodynamic formalism of partially hyperbolic attractors for local diffeomorphisms admitting an invariant stable bundle and a positively invariant cone field with non-uniform cone expansion at a positive Lebesgue measure set of points. These include the case of attractors for Axiom A endomorphisms and partially hyperbolic endomorphisms derived from Anosov. We prove these attractors have finitely many SRB measures, that these are hyperbolic, and that the SRB measure is unique provided the dynamics is transitive. Moreover, we show that the SRB measures are statistically stable (in the weak$^{\ast }$ topology) and that their entropy varies continuously with respect to the local diffeomorphism.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献