Author:
BARBOT THIERRY,FENLEY SÉRGIO R.
Abstract
In this article we analyze totally periodic pseudo-Anosov flows in graph 3-manifolds. This means that in each Seifert fibered piece of the torus decomposition, the free homotopy class of regular fibers has a finite power which is also a finite power of the free homotopy class of a closed orbit of the flow. We show that each such flow is topologically equivalent to one of the model pseudo-Anosov flows which we previously constructed in Barbot and Fenley (Pseudo-Anosov flows in toroidal manifolds.Geom. Topol. 17(2013), 1877–1954). A model pseudo-Anosov flow is obtained by glueing standard neighborhoods of Birkhoff annuli and perhaps doing Dehn surgery on certain orbits. We also show that two model flows on the same graph manifold are isotopically equivalent (i.e. there is a isotopy of$M$mapping the oriented orbits of the first flow to the oriented orbits of the second flow) if and only if they have the same topological and dynamical data in the collection of standard neighborhoods of the Birkhoff annuli.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献