Author:
HIRSCH MORRIS W.,TURIEL F.-J.
Abstract
Let$M$be an analytic connected 2-manifold with empty boundary, over the ground field$\mathbb{F}=\mathbb{R}$or$\mathbb{C}$. Let$Y$and$X$denote differentiable vector fields on$M$. We say that$Y$tracks$X$if$[Y,X]=fX$for some continuous function$f:\,M\rightarrow \mathbb{F}$. A subset$K$of the zero set$\mathsf{Z}(X)$is an essential block for$X$if it is non-empty, compact and open in$\mathsf{Z}(X)$, and the Poincaré–Hopf index$\mathsf{i}_{K}(X)$is non-zero. Let${\mathcal{G}}$be a finite-dimensional Lie algebra of analytic vector fields that tracks a non-trivial analytic vector field$X$. Let$K\subset \mathsf{Z}(X)$be an essential block. Assume that if$M$is complex and$\mathsf{i}_{K}(X)$is a positive even integer, no quotient of${\mathcal{G}}$is isomorphic to$\mathfrak{s}\mathfrak{l}(2,\mathbb{C})$. Then${\mathcal{G}}$has a zero in$K$(main result). As a consequence, if$X$and$Y$are analytic,$X$is non-trivial, and$Y$tracks$X$, then every essential component of$\mathsf{Z}(X)$meets$\mathsf{Z}(Y)$. Fixed-point theorems for certain types of transformation groups are proved. Several illustrative examples are given.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Reference39 articles.
1. [14] M. Hirsch . Common zeros of families of smooth vector fields on surfaces. Preprint, 2015, arXiv:1506.02185.
2. [21] B. Jubin . A generalized Poincaré–Hopf index theorem. Preprint, 2009, arXiv:0903.0697.
3. [15] M. Hirsch . Zero sets of Lie algebras of analytic vector fields on real and complex 2-dimensional manifolds. Preprint, 2013, arXiv:1310.0081v2.
4. [39] F.-J. Turiel . Smooth actions of $Aff^{+}(\mathbb{R})$ on compact surfaces with no fixed point: an elementary construction. Preprint, 2016, arXiv:1602.05736.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献