Pure point/continuous decomposition of translation-bounded measures and diffraction

Author:

AUJOGUE JEAN-BAPTISTE

Abstract

In this work we consider translation-bounded measures over a locally compact Abelian group$\mathbb{G}$, with a particular interest in their so-called diffraction. Given such a measure$\unicode[STIX]{x1D714}$, its diffraction$\widehat{\unicode[STIX]{x1D6FE}}$is another measure on the Pontryagin dual$\widehat{\mathbb{G}}$, whose decomposition into the sum$\widehat{\unicode[STIX]{x1D6FE}}=\widehat{\unicode[STIX]{x1D6FE}}_{\text{p}}+\widehat{\unicode[STIX]{x1D6FE}}_{\text{c}}$of its atomic and continuous parts is central in diffraction theory. The problem we address here is whether the above decomposition of$\widehat{\unicode[STIX]{x1D6FE}}$lifts to$\unicode[STIX]{x1D714}$itself, that is to say, whether there exists a decomposition$\unicode[STIX]{x1D714}=\unicode[STIX]{x1D714}_{\text{p}}+\unicode[STIX]{x1D714}_{\text{c}}$, where$\unicode[STIX]{x1D714}_{\text{p}}$and$\unicode[STIX]{x1D714}_{\text{c}}$are translation-bounded measures having diffraction$\widehat{\unicode[STIX]{x1D6FE}}_{\text{p}}$and$\widehat{\unicode[STIX]{x1D6FE}}_{\text{c}}$, respectively. Our main result here is the almost sure existence, in a sense to be made precise, of such a decomposition. It will also be proved that a certain uniqueness property holds for the above decomposition. Next, we will be interested in the situation where translation-bounded measures are weighted Meyer sets. In this context, it will be shown that the decomposition, whether it exists, also consists of weighted Meyer sets. We complete this work by discussing a natural generalization of the considered problem.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Reference60 articles.

1. Ergodic Properties of Randomly Coloured Point Sets

2. Uniform Distribution in Model Sets

3. Meyer sets and their duals;Moody;NATO ASI Series C Math. Phys. Sci.,1997

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3