Abstract
The Chirikov standard map is a prototypical example of a one-parameter family of volume-preserving maps for which one anticipates chaotic behavior on a non-negligible (positive-volume) subset of phase space for a large set of parameters. Rigorous analysis is notoriously difficult and it remains an open question whether this chaotic region, the stochastic sea, has positive Lebesgue measure for any parameter value. Here we study a problem of intermediate difficulty: compositions of standard maps with increasing coefficient. When the coefficients increase to infinity at a sufficiently fast polynomial rate, we obtain a strong law, a central limit theorem, and quantitative mixing estimates for Holder observables. The methods used are not specific to the standard map and apply to a class of compositions of ‘prototypical’ two-dimensional maps with hyperbolicity on ‘most’ of phase space.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献