Author:
WANG BAO-WEI,WU JUN,XU JIAN
Abstract
We apply the tools of continued fractions to tackle the Diophantine approximation, including the classic Jarník–Besicovitch theorem, localized Jarník–Besicovitch theorem and its several generalizations. As is well known, the classic Jarník–Besicovitch sets, expressed in terms of continued fractions, can be written as $$\begin{eqnarray}\{x\in [0,1):a_{n+1}(x)\geq e^{{\it\tau}(\log |T^{\prime }x|+\cdots +\log |T^{\prime }(T^{n-1}x)|)}~\text{for infinitely many}~n\in \mathbb{N}\},\end{eqnarray}$$ where $T$ is the Gauss map and $a_{n}(x)$ is the $n$th partial quotient of $x$. In this paper, we consider the size of the generalized Jarník–Besicovitch set $$\begin{eqnarray}\{x\in [0,1):a_{n+1}(x)\geq e^{{\it\tau}(x)(f(x)+\cdots +f(T^{n-1}x))}~\text{for infinitely many}~n\in \mathbb{N}\},\end{eqnarray}$$ where ${\it\tau}(x)$ and $f(x)$ are positive functions defined on $[0,1]$.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献