Abstract
Recently, Einsiedler and the authors provided a bound in terms of escape of mass for the amount by which upper-semicontinuity for metric entropy fails for diagonal flows on homogeneous spaces $\unicode[STIX]{x1D6E4}\setminus G$, where $G$ is any connected semisimple Lie group of real rank one with finite center, and $\unicode[STIX]{x1D6E4}$ is any non-uniform lattice in $G$. We show that this bound is sharp, and apply the methods used to establish bounds for the Hausdorff dimension of the set of points that diverge on average.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献