Abstract
We generalize the notion of weakly mixing unitary representations to locally compact quantum groups, introducing suitable extensions of all standard characterizations of weak mixing to this setting. These results are used to complement the non-commutative Jacobs–de Leeuw–Glicksberg splitting theorem of Runde and the author [Ergodic theory for quantum semigroups. J. Lond. Math. Soc. (2) 89(3) (2014), 941–959]. Furthermore, a relation between mixing and weak mixing of state-preserving actions of discrete quantum groups and the properties of certain inclusions of von Neumann algebras, which is known for discrete groups, is demonstrated.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献