Author:
BARRIENTOS PABLO G.,RAIBEKAS ARTEM
Abstract
We study the dynamics of iterated function systems generated by a pair of circle diffeomorphisms close to rotations in the $C^{1+\text{bv}}$-topology. We characterize the obstruction to minimality and describe the limit set. In particular, there are no invariant minimal Cantor sets, which can be seen as a Denjoy/Duminy type theorem for iterated systems on the circle.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Reference18 articles.
1. [6] G. Duminy . Unpublished manuscript, Université de Lille, 1977.
2. Groups acting on the circle;Ghys;Enseign. Math. (2),2001
3. Sur la Conjugaison Différentiable des Difféomorphismes du Cercle a des Rotations
4. [1] P. G. Barrientos , A. Fakhari and A. Sarizadeh . Ergodicity of expanding minimal actions. Preprint arXiv:1307.6054, 2013.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Expanding actions: minimality and ergodicity;Stochastics and Dynamics;2017-05-04
2. Examples of minimal set for IFSs;Discrete & Continuous Dynamical Systems - A;2017
3. On the chaos game of iterated function systems;Topological Methods in Nonlinear Analysis;2016-10-05
4. A NEW EXAMPLE OF A DETERMINISTIC CHAOS GAME;Bulletin of the Australian Mathematical Society;2016-06-02