Abstract
We consider interval exchange transformations of$n$intervals with$k$flips, or$(n,k)$-IETs for short, for positive integers$k,n$with$k\leq n$. Our main result establishes the existence of minimal uniquely ergodic$(n,k)$-IETs when$n\geq 4$; moreover, these IETs are self-induced for$2\leq k\leq n-1$. This result extends the work on transitivity in Gutierrezet al[Transitive circle exchange transformations with flips.Discrete Contin. Dyn. Syst. 26(1) (2010), 251–263]. In order to achieve our objective we make a direct construction; in particular, we use the Rauzy induction to build a periodic Rauzy graph whose associated matrix has a positive power. Then we use a result in the Perron–Frobenius theory [Pullman, A geometric approach to the theory of non-negative matrices.Linear Algebra Appl. 4(1971) 297–312] which allows us to ensure the existence of these minimal self-induced and uniquely ergodic$(n,k)$-IETs,$2\leq k\leq n-1$. We then find other permutations in the same Rauzy class generating minimal uniquely ergodic$(n,1)$- and$(n,n)$-IETs.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Reference33 articles.
1. The number of invariant measures for flows on orientable surfaces;Sataev;Izv. Akad. Nauk SSSR Ser. Mat.,1975
2. Échanges d’intervalles et flots sur les surfaces;Arnoux;Monogr. Enseign. Math.,1981
3. Interval exchange transformations
4. Ergodic Theory and Differentiable Dynamics
5. Smooth nonorientable nontrivial recurrence on two-manifolds
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献