Author:
PAQUETTE ELLIOT,SON YOUNGHWAN
Abstract
We consider the deviation of Birkhoff sums along fixed orbits of substitution dynamical systems. We show distributional convergence for the Birkhoff sums of eigenfunctions of the substitution matrix. For non-coboundary eigenfunctions with eigenvalue of modulus $1$, we obtain a central limit theorem. For other eigenfunctions, we show convergence to distributions supported on Cantor sets. We also give a new criterion for such an eigenfunction to be a coboundary, as well as a new characterization of substitution dynamical systems with bounded discrepancy.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Reference29 articles.
1. Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable
2. The spectra of nonnegative integer matrices via formal power series
3. The adic realizations of the ergodic actions with the homeomorphisms of the Markov compact and the ordered Bratteli diagrams;Vershik;Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) (Teor. Predstav. Din. Sistemy Kombin. i Algoritm. Metody. I),1995
4. A Construction of Transversal Flows for Maximal Markov Automorphisms
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献