Author:
DANILENKO ALEXANDRE I.,LEMAŃCZYK MARIUSZ
Abstract
It is shown that each conservative non-singular Bernoulli shift is either of type $\mathit{II}_{1}$ or $\mathit{III}_{1}$. Moreover, in the latter case the corresponding Maharam extension of the shift is a $K$-automorphism. This extends earlier results obtained by Kosloff for equilibrial shifts. Non-equilibrial shifts of type $\mathit{III}_{1}$ are constructed. We further generalize (partly) the main results to non-singular Markov shifts.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献