Abstract
In this paper we study digit frequencies in the setting of expansions in non-integer bases, and self-affine sets with non-empty interior. Within expansions in non-integer bases we show that if $\unicode[STIX]{x1D6FD}\in (1,1.787\ldots )$ then every $x\in (0,1/(\unicode[STIX]{x1D6FD}-1))$ has a simply normal $\unicode[STIX]{x1D6FD}$-expansion. We also prove that if $\unicode[STIX]{x1D6FD}\in (1,(1+\sqrt{5})/2)$ then every $x\in (0,1/(\unicode[STIX]{x1D6FD}-1))$ has a $\unicode[STIX]{x1D6FD}$-expansion for which the digit frequency does not exist, and a $\unicode[STIX]{x1D6FD}$-expansion with limiting frequency of zeros $p$, where $p$ is any real number sufficiently close to $1/2$. For a class of planar self-affine sets we show that if the horizontal contraction lies in a certain parameter space and the vertical contractions are sufficiently close to $1$, then every non-trivial vertical fibre contains an interval. Our approach lends itself to explicit calculation and gives rise to new examples of self-affine sets with non-empty interior. One particular strength of our approach is that it allows for different rates of contraction in the vertical direction.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Reference30 articles.
1. The Komornik-Loreti Constant is Transcendental
2. Periodic unique beta-expansions: the Sharkovskiĭ ordering
3. [1] Alcaraz Barrera, R. , Baker, S. and Kong, D. . Entropy, topological transitivity, and dimensional properties of unique $q$ -expansions. Trans. Amer. Math. Soc., to appear.
4. Expansions in non-integer bases: lower order revisited;Baker;Integers,2014
5. Simultaneous and hybrid beta-encodings
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献