Author:
BERTOLIM M. A.,LIMA D. V. S.,MELLO M. P.,DE REZENDE K. A.,DA SILVEIRA M. R.
Abstract
In this article, Conley’s connection matrix theory and a spectral sequence analysis of a filtered Morse chain complex $(C,{\rm\Delta})$ are used to study global continuation results for flows on surfaces. The briefly described unfoldings of Lyapunov graphs have been proved to be a well-suited combinatorial tool to keep track of continuations. The novelty herein is a global dynamical cancellation theorem inferred from the differentials of the spectral sequence $(E^{r},d^{r})$. The local version of this theorem relates differentials $d^{r}$ of the $r$th page $E^{r}$ to Smale’s theorem on cancellation of critical points.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献