Gelfand pairs and strong transitivity for Euclidean buildings

Author:

CAPRACE PIERRE-EMMANUEL,CIOBOTARU CORINA

Abstract

AbstractLet $G$ be a locally compact group acting properly, by type-preserving automorphisms on a locally finite thick Euclidean building $\Delta $, and $K$ be the stabilizer of a special vertex in $\Delta $. It is known that $(G, K)$ is a Gelfand pair as soon as $G$ acts strongly transitively on $\Delta $; in particular, this is the case when $G$ is a semi-simple algebraic group over a local field. We show a converse to this statement, namely that if $(G, K)$ is a Gelfand pair and $G$ acts cocompactly on $\Delta $, then the action is strongly transitive. The proof uses the existence of strongly regular hyperbolic elements in $G$ and their peculiar dynamics on the spherical building at infinity. Other equivalent formulations are also obtained, including the fact that $G$ is strongly transitive on $\Delta $ if and only if it is strongly transitive on the spherical building at infinity.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Reference21 articles.

1. A cut point theorem for $\rm{CAT}(0)$ groups

2. Buildings and Hecke algebras

3. Classification of the irreducible representations of the automorphism groups of Bruhat–Tits trees;Ol’šanskiĭ;Funkcional. Anal. i Priložen.,1977

4. Analyse Harmonique dans les Systèmes de Tits Bornologiques de Type Affine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RADU GROUPS ACTING ON TREES ARE CCR;Journal of the Australian Mathematical Society;2024-03-06

2. Factorial multiparameter Hecke von Neumann algebras and representations of groups acting on right-angled buildings;Journal de Mathématiques Pures et Appliquées;2023-04

3. Some remarks on proper actions, proper metric spaces, and buildings;Advances in Geometry;2022-10-01

4. Chabauty limits of diagonal Cartan subgroups of SL(n,Qp);Journal of Algebra;2022-04

5. Chabauty limits of parahoric subgroups of SL(n,Qp);Expositiones Mathematicae;2021-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3