Abstract
Let$G$be a finitely generated amenable group. We study the space of shifts on$G$over a given finite alphabet $A$. We show that the zero entropy shifts are generic in this space, and that, more generally, the shifts of entropy$c$are generic in the space of shifts with entropy at least $c$. The same is shown to hold for the space of transitive shifts and for the space of weakly mixing shifts. As applications of this result, we show that, for every entropy value$c\in [0,\log |A|]$, there is a weakly mixing subshift of$A^{G}$with entropy $c$. We also show that the set of strongly irreducible shifts does not form a$G_{\unicode[STIX]{x1D6FF}}$in the space of shifts, and that all non-trivial, strongly irreducible shifts are non-isolated points in this space.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献