Author:
BERGELSON VITALY,ROBERTSON DONALD
Abstract
We generalize the polynomial Szemerédi theorem to intersective polynomials over the ring of integers of an algebraic number field, by which we mean polynomials having a common root modulo every ideal. This leads to the existence of new polynomial configurations in positive-density subsets of $\mathbb{Z}^{m}$ and strengthens and extends recent results of Bergelson, Leibman and Lesigne [Intersective polynomials and the polynomial Szemerédi theorem. Adv. Math.219(1) (2008), 369–388] on polynomials over the integers.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献