Improved mixing rates for infinite measure-preserving systems

Author:

TERHESIU DALIA

Abstract

AbstractIn this work, we introduce a new technique for operator renewal sequences associated with dynamical systems preserving an infinite measure that improves the results on mixing rates obtained by Melbourne and Terhesiu [Operator renewal theory and mixing rates for dynamical systems with infinite measure. Invent. Math. 1 (2012), 61–110]. Also, this technique allows us to offer a very simple proof of the key result of Melbourne and Terhesiu that provides first-order asymptotics of operator renewal sequences associated with dynamical systems with infinite measure. Moreover, combining techniques used in this work with techniques used by Melbourne and Terhesiu, we obtain first-order asymptotics of operator renewal sequences under some relaxed assumption on the first return map.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Persistent Non-statistical Dynamics in One-Dimensional Maps;Communications in Mathematical Physics;2024-04

2. Infinite measure mixing for some mechanical systems;Advances in Mathematics;2022-12

3. Limit theorems for wobbly interval intermittent maps;Studia Mathematica;2021

4. Renewal theorems and mixing for non Markov flows with infinite measure;Annales de l'Institut Henri Poincaré, Probabilités et Statistiques;2020-02-01

5. The pressure function for infinite equilibrium measures;Israel Journal of Mathematics;2019-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3