Abstract
AbstractIn this work, we introduce a new technique for operator renewal sequences associated with dynamical systems preserving an infinite measure that improves the results on mixing rates obtained by Melbourne and Terhesiu [Operator renewal theory and mixing rates for dynamical systems with infinite measure. Invent. Math. 1 (2012), 61–110]. Also, this technique allows us to offer a very simple proof of the key result of Melbourne and Terhesiu that provides first-order asymptotics of operator renewal sequences associated with dynamical systems with infinite measure. Moreover, combining techniques used in this work with techniques used by Melbourne and Terhesiu, we obtain first-order asymptotics of operator renewal sequences under some relaxed assumption on the first return map.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献