Quasistatic dynamical systems

Author:

DOBBS NEIL,STENLUND MIKKO

Abstract

We introduce the notion of a quasistatic dynamical system, which generalizes that of an ordinary dynamical system. Quasistatic dynamical systems are inspired by the namesake processes in thermodynamics, which are idealized processes where the observed system transforms (infinitesimally) slowly due to external influence, tracing out a continuous path of thermodynamic equilibria over an (infinitely) long time span. Time evolution of states under a quasistatic dynamical system is entirely deterministic, but choosing the initial state randomly renders the process a stochastic one. In the prototypical setting where the time evolution is specified by strongly chaotic maps on the circle, we obtain a description of the statistical behavior as a stochastic diffusion process, under surprisingly mild conditions on the initial distribution, by solving a well-posed martingale problem. We also consider various admissible ways of centering the process, with the curious conclusion that the ‘obvious’ centering suggested by the initial distribution sometimes fails to yield the expected diffusion.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Projective Cones for Sequential Dispersing Billiards;Communications in Mathematical Physics;2023-02-23

2. Loss of Memory and Moment Bounds for Nonstationary Intermittent Dynamical Systems;Communications in Mathematical Physics;2021-04-01

3. Sunklodas’ Approach to Normal Approximation for Time-Dependent Dynamical Systems;Journal of Statistical Physics;2020-09-25

4. Stability and limit theorems for sequences of uniformly hyperbolic dynamics;Journal of Mathematical Analysis and Applications;2019-12

5. Central limit theorems with a rate of convergence for time-dependent intermittent maps;Stochastics and Dynamics;2019-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3