Dynamical properties of some adic systems with arbitrary orderings

Author:

FRICK SARAH,PETERSEN KARL,SHIELDS SANDI

Abstract

We consider arbitrary orderings of the edges entering each vertex of the (downward directed) Pascal graph. Each ordering determines an adic (Bratteli–Vershik) system, with a transformation that is defined on most of the space of infinite paths that begin at the root. We prove that for every ordering the coding of orbits according to the partition of the path space determined by the first three edges is essentially faithful, meaning that it is one-to-one on a set of paths that has full measure for every fully supported invariant probability measure. We also show that for every$k$the subshift that arises from coding orbits according to the first$k$edges is topologically weakly mixing. We give a necessary and sufficient condition for any adic system to be topologically conjugate to an odometer and use this condition to determine the probability that a random order on a fixed diagram, or a diagram constructed at random in some way, is topologically conjugate to an odometer. We also show that the closure of the union over all orderings of the subshifts arising from codings of the Pascal adic by the first edge has superpolynomial complexity, is not topologically transitive, and has no periodic points besides the two fixed points, while the intersection over all orderings consists of just four orbits.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adic dynamics on the Catalan graph;Dynamical Systems;2024-05-29

2. A classification of nonexpansive Bratteli-Vershik systems;Discrete and Continuous Dynamical Systems;2024

3. Decompositions of Dynamical Systems Induced by the Koopman Operator;Analysis Mathematica;2021-01-16

4. Periodic codings of Bratteli-Vershik systems;MATHEMATICA SCANDINAVICA;2020-05-06

5. Invariant measures for Cantor dynamical systems;Dynamics: Topology and Numbers;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3