Fatou components with punctured limit sets

Author:

BOC-THALER LUKA,FORNÆSS JOHN ERIK,PETERS HAN

Abstract

We study invariant Fatou components for holomorphic endomorphisms in $\mathbb{P}^{2}$. In the recurrent case these components were classified by Fornæss and Sibony [Classification of recurrent domains for some holomorphic maps. Math. Ann. 301(4) (1995), 813–820]. Ueda [Holomorphic maps on projective spaces and continuations of Fatou maps. Michigan Math J.56(1) (2008), 145–153] completed this classification by proving that it is not possible for the limit set to be a punctured disk. Recently Lyubich and Peters [Classification of invariant Fatou components for dissipative Hénon maps. Preprint] classified non-recurrent invariant Fatou components, under the additional hypothesis that the limit set is unique. Again all possibilities in this classification were known to occur, except for the punctured disk. Here we show that the punctured disk can indeed occur as the limit set of a non-recurrent Fatou component. We provide many additional examples of holomorphic and polynomial endomorphisms of $\mathbb{C}^{2}$ with non-recurrent Fatou components on which the orbits converge to the regular part of arbitrary analytic sets.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Reference21 articles.

1. Nonwandering, nonrecurrent Fatou components in P2

2. Fatou sets in complex dynamics on projective spaces

3. Quasiconformal Homeomorphisms and Dynamics I. Solution of the Fatou-Julia Problem on Wandering Domains

4. [16] M. Lyubich and H. Peters . Classification of invariant Fatou components for dissipative Hénon maps. IMS Preprint 12-07.

5. Invariant Fatou components of automorphisms of ℂ2;Jupiter;Far East J. Dyn. Syst.,2003

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Escaping Fatou components with disjoint hyperbolic limit sets;Mathematische Zeitschrift;2024-05-20

2. Automorphisms of $$\mathbb {C}^2$$ with Parabolic Cylinders;The Journal of Geometric Analysis;2020-04-17

3. A construction of Böttcher coordinates for holomorphic skew products;Nonlinearity;2019-06-18

4. Fatou components of elliptic polynomial skew products;Ergodic Theory and Dynamical Systems;2017-11-28

5. Polynomial skew-products in dimension 2: Bulging and Wandering Fatou components;Bollettino dell'Unione Matematica Italiana;2016-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3