Author:
CAMACHO CÉSAR,SCÁRDUA BRUNO
Abstract
We show that a germ of a holomorphic one-dimensional foliation at a singularity in a space of dimension two admits a holomorphic first integral if and only if there are infinitely many closed leaves and a finite number of separatrices, with each separatrix having linearizable holonomy. Indeed, if there are infinitely many closed leaves and the set of separatrices is finite, then the foliation admits either a holomorphic first integral or a formal simple integrating factor of Darboux type.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Reference32 articles.
1. Reduction of Singularities of the Differential Equation Ady = Bdx
2. [29] J. Raissy . Geometrical methods in the normalization of germs of biholomorphisms. PhD Thesis, Università di Pisa, 2010.
3. Sur ĽintÉgration algÉbrique des Équations diffÉrentielles du premier ordre et du premier degrÉ
4. Fixed points and circle maps
5. Sur une question de Dulac et Fatou;Pérez-Marco;C.R. Acad. Sci. Paris,1995
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献