Abstract
We consider a family of higher-dimensional non-commutative tori, which are twisted analogues of the algebras of continuous functions on ordinary tori and their Toeplitz extensions. Just as solenoids are inverse limits of tori, our Toeplitz non-commutative solenoids are direct limits of the Toeplitz extensions of non-commutative tori. We consider natural dynamics on these Toeplitz algebras, and we compute the equilibrium states for these dynamics. We find a large simplex of equilibrium states at each positive inverse temperature, parametrized by the probability measures on an (ordinary) solenoid.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献