Abstract
We show that for every ergodic measure-preserving system $(X,{\mathcal{X}},\unicode[STIX]{x1D707},S,T)$ with commuting transformations $S$ and $T$, the average $$\begin{eqnarray}\frac{1}{N^{3}}\mathop{\sum }_{i,j,k=0}^{N-1}f_{0}(S^{j}T^{k}x)f_{1}(S^{i+j}T^{k}x)f_{2}(S^{j}T^{i+k}x)\end{eqnarray}$$ converges for $\unicode[STIX]{x1D707}$-almost every $x\in X$ as $N\rightarrow \infty$ for all $f_{0},f_{1},f_{2}\in L^{\infty }(\unicode[STIX]{x1D707})$. We also show that if $(X,{\mathcal{X}},\unicode[STIX]{x1D707},S,T)$ is an ergodic measurable distal system, then the average $$\begin{eqnarray}\frac{1}{N}\mathop{\sum }_{i=0}^{N-1}f_{1}(S^{i}x)f_{2}(T^{i}x)\end{eqnarray}$$ converges for $\unicode[STIX]{x1D707}$-almost every $x\in X$ as $N\rightarrow \infty$ for all $f_{1},f_{2}\in L^{\infty }(\unicode[STIX]{x1D707})$.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Reference15 articles.
1. Strictly ergodic models for dynamical systems
2. The prevalence of uniquely ergodic systems;Jewett;J. Math. Mech.,1969/1970
3. [10] W. Huang , S. Shao and X. D. Ye . Pointwise convergence of multiple ergodic averages and strictly ergodic models. Preprint, 2014, arXiv:1406.5930.
4. Nonconventional ergodic averages and nilmanifolds
5. Recurrence in Ergodic Theory and Combinatorial Number Theory
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献