Author:
CUNY C.,DEDECKER J.,KOREPANOV A.,MERLEVÈDE F.
Abstract
We prove the one-dimensional almost sure invariance principle with essentially optimal rates for slowly (polynomially) mixing deterministic dynamical systems, such as Pomeau–Manneville intermittent maps, with Hölder continuous observables. Our rates have form $o(n^{\unicode[STIX]{x1D6FE}}L(n))$, where $L(n)$ is a slowly varying function and $\unicode[STIX]{x1D6FE}$ is determined by the speed of mixing. We strongly improve previous results where the best available rates did not exceed $O(n^{1/4})$. To break the $O(n^{1/4})$ barrier, we represent the dynamics as a Young-tower-like Markov chain and adapt the methods of Berkes–Liu–Wu and Cuny–Dedecker–Merlevède on the Komlós–Major–Tusnády approximation for dependent processes.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献