Abstract
AbstractWe consider special flows over the rotation by an irrational$\alpha $under the roof functions of bounded variation without continuous, singular part in the Lebesgue decomposition and sum of jumps not equal to zero. We show that all such flows are weakly mixing. Under the additional assumption that$\alpha $has bounded partial quotients, we study the weak Ratner property. We establish this property whenever an additional condition (stable under sufficiently small perturbations) on the set of jumps is satisfied. While it is a classical result that the flows under consideration are not mixing, one more condition on the set of jumps turns out to be sufficient to obtain the absence of partial rigidity, hence mild mixing of such flows.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献