Abstract
AbstractLet $ \mathbb{B} $ be a $p$-uniformly convex Banach space, with $p\geq 2$. Let $T$ be a linear operator on $ \mathbb{B} $, and let ${A}_{n} x$ denote the ergodic average $(1/ n){\mathop{\sum }\nolimits}_{i\lt n} {T}^{n} x$. We prove the following variational inequality in the case where $T$ is power bounded from above and below: for any increasing sequence $\mathop{({t}_{k} )}\nolimits_{k\in \mathbb{N} } $ of natural numbers we have ${\mathop{\sum }\nolimits}_{k} \mathop{\Vert {A}_{{t}_{k+ 1} } x- {A}_{{t}_{k} } x\Vert }\nolimits ^{p} \leq C\mathop{\Vert x\Vert }\nolimits ^{p} $, where the constant $C$ depends only on $p$ and the modulus of uniform convexity. For $T$ a non-expansive operator, we obtain a weaker bound on the number of $\varepsilon $-fluctuations in the sequence. We clarify the relationship between bounds on the number of $\varepsilon $-fluctuations in a sequence and bounds on the rate of metastability, and provide lower bounds on the rate of metastability that show that our main result is sharp.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献