Abstract
AbstractLet φ:ℙN⤏ℙN be a dominant rational map. The dynamical degree of φ is the quantity δφ=lim (deg φn)1/n. When φ is defined over ${\bar {{\mathbb {Q}}}}$, we define the arithmetic degree of a point $P\in {\mathbb {P}}^N({\bar {{\mathbb {Q}}}})$ to be αφ(P)=lim sup h(φn(P))1/n and the canonical height of P to be $\hat {h}_\varphi (P)=\limsup \delta _\varphi ^{-n}n^{-\ell _\varphi }h(\varphi ^n(P))$ for an appropriately chosen ℓφ. We begin by proving some elementary relations and making some deep conjectures relating δφ, αφ(P) , ${\hat h}_\varphi (P)$, and the Zariski density of the orbit 𝒪φ(P) of P. We then prove our conjectures for monomial maps.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献