Dynamical degree, arithmetic entropy, and canonical heights for dominant rational self-maps of projective space

Author:

SILVERMAN JOSEPH H.

Abstract

AbstractLet φ:ℙN⤏ℙN be a dominant rational map. The dynamical degree of φ is the quantity δφ=lim (deg φn)1/n. When φ is defined over ${\bar {{\mathbb {Q}}}}$, we define the arithmetic degree of a point $P\in {\mathbb {P}}^N({\bar {{\mathbb {Q}}}})$ to be αφ(P)=lim sup hn(P))1/n and the canonical height of P to be $\hat {h}_\varphi (P)=\limsup \delta _\varphi ^{-n}n^{-\ell _\varphi }h(\varphi ^n(P))$ for an appropriately chosen φ. We begin by proving some elementary relations and making some deep conjectures relating δφαφ(P) , ${\hat h}_\varphi (P)$, and the Zariski density of the orbit 𝒪φ(P) of P. We then prove our conjectures for monomial maps.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Arithmetic degrees and Zariski dense orbits of cohomologically hyperbolic maps;Transactions of the American Mathematical Society;2024-06-25

2. Singularities and growth of higher order discrete equations;Open Communications in Nonlinear Mathematical Physics;2024-04-16

3. Periodic points and arithmetic degrees of certain rational self-maps;Journal of the Mathematical Society of Japan;2023-05-29

4. Kawaguchi–Silverman conjecture for endomorphisms on rationally connected varieties admitting an int-amplified endomorphism;Mathematische Annalen;2021-11-16

5. Dynamical height growth: left, right, and total orbits;Pacific Journal of Mathematics;2021-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3