S-Adenosyl-l-methionine restores photoreceptor function following acute retinal ischemia

Author:

MOXON-LESTER LEITH,TAKAMOTO KEI,COLDITZ PAUL B.,BARNETT NIGEL L.

Abstract

AbstractThe survival and function of retinal neurons is dependent on mitochondrial energy generation and its intracellular distribution by creatine kinase. Post ischemic disruption of retinal creatine synthesis, creatine kinase activity, or transport of creatine into neurons may impair retinal function. S-adenosyl-l-methionine (SAMe) is required for creatine synthesis, phosphatidylcholine and glutathione synthesis, and transducin methylation. These reactions are essential for photoreceptor function but may be downregulated after ischemia due to a reduction in SAMe. Our aim was to determine whether administration of SAMe after ischemia could improve retinal function. Unilateral retinal ischemia was induced in adult rats by increasing the intraocular pressure to 110 mm Hg for 60 min. Immediately after the ischemic insult, SAMe was injected into the vitreous (100μm), followed by oral administration (69 mg/kg/day) for 5 or 10 days. Retinal function (electroretinography), histology, and creatine transporter (CRT-1) expression were analyzed. Photoreceptoral responses (RmP3,S), rod and cone bipolar cell responses (PII), and oscillatory potentials were reduced by the ischemia/reperfusion insult. Although SAMe treatment ameliorated the ischemia-induced histological damage by day 5, there was no improvement in retinal function and the intensity of CRT-1 labeling in ischemic retinas was markedly reduced. However, 10 days after ischemia, a recovery in CRT-1 immunolabeling was evident and SAMe supplementation significantly restored photoreceptor function and rod PII responses. In conclusion, these data suggest that creatine transport and methylation reactions, such as creatine synthesis, may be compromised by an ischemic insult contributing to retinal dysfunction and injury. Oral SAMe supplementation after retinal ischemia may provide an effective, safe, and accessible neuroprotective strategy.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3