Linear filtering and nonlinear interactions in direction-selective visual cortex neurons: A noise correlation analysis

Author:

BAKER CURTIS L.

Abstract

Spatial and temporal properties related to direction selectivity of both simple and complex type visual cortex neurons were assessed by cross-correlation analysis of their responses to random ternary white noise. This stimulus consisted of multiple randomly placed bars, each colored white, black, or gray with equal probability, which were rerandomized every 5–10 ms. A first-order cross-correlation analysis of a neuron's spike train with the spatiotemporal history of the stimulus provided an estimate of the neuron's linear spatiotemporal filtering properties. A nonlinear correlation analysis measured the amount of interaction for pair-wise combinations of bars as a function of their relative spatial and temporal separations. The spatiotemporal orientation of each of these functions was quantified using a “motion energy index” (MEI), which was compared to the neurons' direction selectivity measured with drifting sinewave gratings. Both first-order and nonlinear correlation plots usually showed st orientation whose sign was consistent with the neuron's direction preference; however, in many cases the MEI for first-order analysis was weak compared to that seen in the nonlinear interactions. The structures of the nonlinear interaction functions were also compared with predictions from a conventional model of direction selectivity based on a simple spatiotemporally oriented linear filter, followed by an intensive nonlinearity (“LN model”). These comparisons showed that some neurons' data agreed reasonably well with such a model, while others agreed poorly or not at all. Simulations of an alternative model which combines signals from idealized lagged and nonlagged front-end linear filters produce noise correlation results more like those seen in the neurophysiological data.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3