Author:
VUGLER ANTHONY A.,SEMO MA'AYAN,JOSEPH ANNA,JEFFERY GLEN
Abstract
AbstractThe melanopsin positive, intrinsically photosensitive retinal ganglion cells (ipRGCs) of the inner retina have been shown to send wide-ranging projections throughout the brain. To investigate the response of this important cell type during retinal dystrophy, we use the Royal College of Surgeons (RCS) dystrophic rat, a major model of retinal degeneration. We find that ipRGCs exhibit a distinctive molecular profile that remains unaltered during early stages of outer retinal pathology (15 weeks of age). In particular, these cells express βIII tubulin, α-acetylated tubulin, and microtubule-associated proteins (MAPs), while remaining negative for other RGC markers such as neurofilaments, calretinin, and parvalbumin. By 14 months of age, melanopsin positive fibers invade ectopic locations in the dystrophic retina and ipRGC axons/dendrites become distorted (a process that may involve vascular remodeling). The morphological abnormalities in melanopsin processes are associated with elevated immunoreactivity for MAP1b and a reduction in α-acetylated tubulin. Quantification of ipRGCs in whole mounts reveals reduced melanopsin cell number with increasing age. Focusing on the retinal periphery, we find a significant decline in melanopsin cell density contrasted by a stability of melanopsin positive processes. In addition to these findings, we describe for the first time, a distinct plexus of melanopsin processes in the far peripheral retina, a structure that is coincident with a short wavelength opsin cone-enriched rim. We conclude that some ipRGCs are lost in RCS dystrophic rats as the disease progresses and that this loss may involve vascular remodeling. However, a significant number of melanopsin positive cells survive into advanced stages of retinal degeneration and show indications of remodeling in response to pathology. Our findings underline the importance of early intervention in human retinal disease in order to preserve integrity of the inner retinal photoreceptive network.
Publisher
Cambridge University Press (CUP)
Subject
Sensory Systems,Physiology
Reference60 articles.
1. Melanopsin-Containing Retinal Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity
2. Photoreceptor loss in age-related macular degeneration;Curcio;Investigative Ophthalmology and Visual Science,1996
3. Permeability of retinal capillaries in rats with inherited retinal degeneration;Essner;Investigative Ophthalmology and Visual Science,1979
4. The human retina has a cone-enriched rim
5. Distribution of cone photoreceptors in the mammalian retina
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献