Diversity of neuronal phenotypes expressed in monolayer cultures from immature rabbit retina

Author:

Möckel V.,Löhrke S.,Hofmann H.-D.

Abstract

AbstractWe have used monolayer cultures prepared from early postnatal rabbit retinae (days 2–5) by the sandwich technique to study the capacity of immature neurons to express specific neuronal phenotypes in a homogeneousin vitroenvironment. Applying morphological, immunocytochemical, and autoradiographic criteria, we demonstrate that a variety of phenotypes could be distinguished after 7–14 daysin vitro, and correlated with known retinal cell types. Bipolar cell-like neurons (approximately 4% of total cell number) were identified by cell type-specific monoclonal antibodies (115A10) and their characteristic bipolar morphology. Small subpopulations (about 1%) of GABA-immunoreactive neurons acquired elaborate morphologies strikingly similar to those of A- and B-type horizontal cells. Amongst putative amacrine cells several different subpopulations could be classified. GABA-immunoreactive amacrine-like neurons (6.5%), which also showed high affinity [3H]-GABA uptake, comprised cells of varying size and shape and could be subdivided into subpopulations with respect to their response to different glutamate receptor agonists (NMDA, kainic acid, quisqualic acid). In addition, a small percentage of [3H]-GABA accumulating cells with large dendritic fields showed tyrosine-hydroxylase immunoreactivity. Presumptive glycinergic amacrine cells (18.5%) were rather uniform in shape and had small dendritic fields. Release of [3H]-glycine from these neurons was evoked by kainic and quisqualic acid but not by NMDA. Small [3H]-glutamate accumulating neurons with few short processes were the most frequent cell type (73%). This cell type also exhibited opsin immunoreactivity and probably represented incompletely differentiated photoreceptor cells. Summing the numbers of characterized cells indicated that we were able to attribute a defined retinal phenotype to most, if not all of the cultured neurons. Thus, we have demonstrated that immature neuronal cells growing in monolayer cultures, in the absence of a structured environment, are capable of maintaining or producing specific morphological and functional properties corresponding to those expressedin vivo.These results stress the importance of intrinsic factors for the regulation of neuronal differentiation. On the other hand, morphological differentiation was far from perfect indicating the requirement for regulatory factors.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3