The development of MK-801, kainate, AMPA, and muscimol binding sites in cat visual cortex

Author:

Gordon Barbara,Tseng Ying L.,Jaeger Rose,Petrovic Alexandra,Tovar Kenneth

Abstract

AbstractPrevious work using homogenate binding has shown that the development of (+)-5-methyl-10, ll-dihydro-5H-dibenzo[a, d]-cyclohepten-5, 10imine maleate (MK-801) binding in cat visual cortex increases from 21 days to 42 days, the height of the plastic period, and decreases in adulthood. We have studied the generality of this finding by examining the development of NMDA binding sites in several brain regions and by examining the development of other binding sites in the visual cortex. After confirming the original finding, we extended it by showing that the sensitivity of MK-801 binding sites to glutamate and glycine decreases when the cat becomes an adult. We then examined the regional specificity of MK-801 binding. Retinal binding did not change significantly with age. Binding in both visual cortex and hippocampus increased significantly from 7 days to 42 days regardless of whether binding was measured per milligram wet weight or per milligram protein. The decline from 42 days to adulthood was less dramatic in the hippocampus than in the visual cortex and was statistically significant only when binding was measured per milligram protein. Saturation analyses also showed a difference in the two structures. Bmax in the visual cortex, but not in the hippocampus, decreased from 42 days to adulthood. To determine whether these developmental changes were specific to MK-801 binding sites, we compared the age-dependent binding of MK-801, kainate, alpha-amino-3-hydroxy-5-methyl-4-isoxazoIepropionic acid (AMPA), and muscimol. Like MK-801, kainate binding increased from 7 days to 42 days and decreased from 42 days to adulthood. AMPA and muscimol binding showed a similar increase in binding from 7 days to 42 days but did not decrease significantly from 42 days to adulthood. Displacement experiments suggest that AMPA and kainate bind to separate sites. The 42-day peak in NMDA and kainate binding suggests that their associated receptors may have a role in determining the plastic period of visual cortex.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3