Cell types and response timings in the medial interlaminar nucleus and C-layers of the cat lateral geniculate nucleus

Author:

HUMPHREY ALLEN L.,MURTHY ADITYA

Abstract

Previous evidence concerning the physiological cell classes in the medial interlaminar nucleus (MIN) has been conflicting. We reexamined the MIN using standard functional tests to distinguish X-, Y- and W-cells. Discharge patterns to flashing spots also were used to identify some cells as lagged or nonlagged, as previously done for the geniculate A-layers. Also, each cell's response timing (latency and absolute phase) was measured from discharges to a spot undergoing sinusoidal luminance modulation. Of 71 MIN cells, 48% were Y, 27% were W, 8% were X, and 17% were unclassifiable. Lagged and nonlagged discharge profiles were observed in each cell group, with 28% of all cells being lagged. Lagged cells displayed a response suppression and long latency to discharge following spot onset, and a slow decay in firing at spot offset that was often preceded by a transient discharge. These profiles were indistinguishable from those of lagged cells in the A-layers. MIN cells also were heterogeneous in response timing, displaying a range of latency and absolute phase values similar to that in the A-layers. We extended these analyses to 27 cells in the geniculate C-layers. In layer C, 35% of cells were Y, 10% were X, 25% were W, and 30% were unclassifiable. About 11% had lagged profiles, and were X-cells or unclassifiable cells. Layers C1 and C2 contained only W-cells and no lagged profiles. The range of timings in the C-layers was somewhat narrower than in the MIN. Overall, these results show that the MIN contains a greater variety of functional cell classes than heretofore appreciated. Further, it appears that mechanisms which create different timing delays in the A-layers also exist in the MIN and layer C. These timings may contribute to direction selectivity in extrastriate cortex.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3