Light-evoked contraction of red absorbing cones in the Xenopus retina is maximally sensitive to green light

Author:

Besharse Joseph C.,Witkovsky Paul

Abstract

AbstractTo test the hypothesis that light-evoked cone contraction in eye cups from Xenopus laevis is controlled through a direct mechanism initiated by the cone's own photopigment, we conducted spectral-sensitivity experiments. We estimate that initiation of contraction of red absorbing cones (611 nm) is 1.5 log units more sensitive to green (533 nm) than red (650 nm) light stimuli. The difference is comparable to that predicted from the spectral-sensitivity function of the green absorbing, principal rod (523 nm). Furthermore, 480-nm and 580-nm stimuli which are absorbed nearly equally by the principal rod have indistinguishable effects on cone contraction. We also found that light blockade of nighttime cone elongation is much more sensitive to green than to red light stimuli. Our observations are inconsistent with the hypothesis tested, and suggest that light-regulated cone motility is controlled through an indirect mechanism initiated primarily by the green absorbing, principal rod.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3