The morphology of collicular and retinal axons ending on small relay (W-like) cells of the primate lateral geniculate nucleus

Author:

Lachica E. A.,Casagrande V. A.

Abstract

AbstractThe lateral geniculate nucleus (LGN) of every primate examined contains a set of small relay cells in addition to separate sets of magnocellular and parvocellular relay cells. These small cells receive a direct retinal projection, and an indirect retinal projection via the superior colliculus (SC). Receptive-field analyses of the small LGN cells in the bush baby, a lorisiform primate, indicate that this cell class is composed of subclasses, similar in physiology to cat W cells. In an effort to identify some of these subclasses, we have examined the morphological features of retinal and collicular axonal arbors that end on small W-like cells in the LGN of the bush baby, Galago crassicaudatus. Small cells in this species are found in a prominent pair of koniocellular (K) layers as well as the interlaminar zones (ILZs).Retinal arbors were examined by bulk iontophoretic injection of horseradish peroxidase into the optic tract. Collicular arbors were filled via iontophoretic injection of biocytin into the superficial layers of the SC. Forty-eight axon arbors were completely reconstructed and quantitatively evaluated. Our findings show that retinal and collicular axon terminals differ in morphology on the basis of a number of criteria. Our analyses also suggest that retinal axons may have a stronger influence on K cells and collicular axons have a stronger influence on ILZ cells. The ramifications of these findings are provocative since these small LGN cells are known to project directly to the cytochrome-oxidase (CO) blobs within striate cortex. This relationship suggests that CO blob cells receive complex visual input not only from magnocellular and parvocellular LGN cells, but also from small cell pathways that are differentially influenced by retinal and collicular cells.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3