Visual and vestibular reflexes that stabilize gaze in the chameleon

Author:

Gioanni Henri,Bennis Mohamed,Sansonetti Annie

Abstract

AbstractSpontaneous eye movements as well as visual, vestibular, and proprioceptive cervical reflexes which contribute to gaze stabilization were investigated in the chameleon using the magnetic search-coil technique. The oculomotor range of each eye was very large (180 deg horizontally × 80 deg vertically). Spontaneous ocular saccades were independent in the two eyes and could have very large amplitudes. The fast phases of nystagmus during the stabilization reflexes were also independent in the eyes. In the head-restrained condition, optokinetic nystagmus (OKN) had a low gain in both horizontal and vertical planes (0.35 at 5 deg/s) and showed little binocular interaction. The vestibulo-ocular reflex (VOR) exhibited a low gain (0.2–0.3 from 0.05–1 Hz) and a high-phase lead at low frequency (140 deg at 0.05 Hz). Rotation of the animal in the presence of a visible surround increased the overall gain of gaze stabilization to 0.4–0.5 (P < 0.01) and considerably reduced the phase lead (38 deg at 0.05 Hz). In the head-free condition, head and eye reflexes were active simultaneously during both optokinetic and vestibular stimulation, but nystagmic head movements appeared only occasionally with a rather loose eye-head coordination. During optokinetic stimulation, eye movements contributed more than head movements to gaze stabilization, whereas, during vestibular or visuo-vestibular stimulation, the relative contribution of eye and head responses varied with stimulus frequency. When the head was freed, overall gain for gaze stabilization increased from 0.35 to 0.45 (P < 0.05) for optokinetic stimulation at 5 deg/s and from 0.2–0.3 to 0.4–0.75 (P < 0.001) for vestibular stimulation at 0.05–1 Hz. Optimal gaze stabilization (gain of 0.8) was only obtained with combined visual and vestibular stimulation in the free-head condition. Cervical stimulation provoked a compensatory cervico-ocular reflex (COR) with a gain of 0.2–0.4 as well as ocular saccades, which were especially numerous in the presence of a visual surround. The direction of these saccades alternated between compensatory and anti-compensatory.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3