The topography of rod and cone photoreceptors in the retina of the ground squirrel

Author:

KRYGER Z.,GALLI-RESTA L.,JACOBS G.H.,REESE B.E.

Abstract

The distributions of rod and cone photoreceptors have been determined in the retina of the California ground squirrel, Spermophilus beecheyi. Retinas were fixed by perfusion and the rods and cones were detected with indirect immunofluorescence using opsin antibodies. Local densities were determined at 2-mm intervals across the entire retina, from which total numbers of each receptor type were estimated and isodensity distributions were constructed. The ground squirrel retina contains 7.5 million cones and 1.27 million rods. The peak density for the cones (49,550/mm2) is found in a horizontal strip of central retina 2 mm ventral to the elongated optic nerve head, falling gradually to half this value in the dorsal and ventral retinal periphery. Of the cones, there are 14 M cones for every S cone. S cone density is relatively flat across most of the retina, reaching a peak (4500/mm2) at the temporal end of the visual streak. There is one exception to this, however: S cone density climbs dramatically at the extreme dorso-nasal retinal margin (20,000/mm2), where the local ratio of S to M cones equals 1. Rod density is lowest in the visual streak, where the rods comprise less than 5% of the local photoreceptor population, increasing conspicuously in the ventral retina, where the rods achieve 30% of the local photoreceptor population (13,000/mm2). The functional importance of the change in S to M cone ratio at the dorsal circumference of the retina is compromised by the extremely limited portion of the visual field subserved by this retinal region. The significance for vision, if any, remains to be determined. By contrast, the change in rod/cone ratio between the dorsal and ventral halves of the retina indicates a conspicuous asymmetry in the ground squirrel's visual system, suggesting a specialization for maximizing visual sensitivity under dim levels of illumination in the superior visual field.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3