Author:
ZHOU CHENGWEN,DACHEUX RAMON F.
Abstract
Physiological properties of ligand-activated currents were characterized for morphologically identified AII amacrine cells in the rabbit retina by using whole-cell recordings in a superfused retina slice preparation. The AII amacrine cells were identified based on their distinct narrow-field, bistratified morphology. In the present study, the whole-cell recordings from AII amacrine cells synaptically isolated from presynaptic influences demonstrated the presence of glutamate AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid) receptors, but no kainate receptors. The presence of only AMPA receptors on rabbit AII amacrine cells is in contrast to an earlier study on rabbit AII amacrine cells by Bloomfield and Xin (2000), but consistent with previous studies on rat AII amacrine cells. In addition, NMDA (N-methyl-D-aspartate) -activated currents blocked by the NMDA antagonist D-AP7 (D-2-amino-7-phosphonoheptanoic acid) were found on the AII amacrine cells. These most likely extrasynaptic NMDA-activated currents were attenuated by the presence of Co2+interacting with Mg2+and Ca2+as they competed for divalent cation-binding sites within the NMDA channel. AII amacrine cells also possessed GABA (γ-aminobutyric acid) -activated currents that were unaffected by the GABACreceptor antagonist TPMPA (1,2,5,6-tetrahydropyridine-4-yl methylphosphinic), but were completely blocked by the GABAAantagonist bicuculline. This indicates that the major inhibitory inputs were mediated by only GABAAreceptors located directly on the AII amacrine cells. Furthermore, although the AII amacrine cells were glycinergic amacrine cells, they also possessed glycine-activated currents that may be mediated by autoreceptors.
Publisher
Cambridge University Press (CUP)
Subject
Sensory Systems,Physiology
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献