Spatial vision of the cat: Variation with eccentricity

Author:

Pasternak Tatiana,Horn Kris

Abstract

AbstractWe examined the grating acuity and contrast sensitivity of cats whose eye position was monitored with a scleral search-coil technique. During each trial, the cat was required to maintain fixation on a laser spot and respond to the presence or the absence of a grating by pressing a right or left pedal. With this procedure, acuity was measured along the horizontal and vertical meridian over a range of eccentricities in the nasal, temporal, superior, and inferior retina. In addition, contrast sensitivity for stationary and drifting gratings was measured for the temporal retina along the horizontal meridian. Acuity in area centralis reached about 3.5 cycle\deg and declined by 0.5 octaves at 4 deg and by about 1.3 octaves at 16-deg eccentricity in the nasal retina. The acuity was higher in the nasal than temporal retina. At all eccentricities, spatial resolution exceeded the resolution limit derived from Y (alpha)-cell properties. Contrast sensitivity also decreased as the eccentricity increased when the target size was held constant. The slope of sensitivity-eccentricity function was relatively shallow for a low spatial frequency (0.30 cycle\deg) with sensitivity decreasing by a factor of 1.5–2 at 8-deg eccentricity. The slope of the sensitivity falloff for high spatial-frequency gratings (1.2 cycle\deg) was steeper, with a 5–10-fold difference in sensitivity between 0 and 8 deg. By varying the target size, we determined that the summation area in the cat is about a factor of 3 smaller in area centralis than a 16-deg eccentricity. When the size of the centrally and peripherally viewed targets was scaled relative to visual acuity, the sensitivity was constant across the visual field.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3