Functional role of GABA in cat retina: II. Effects of GABAA antagonists

Author:

Frumkes Thomas E.,Nelson Ralph,Pflug Renate

Abstract

AbstractPutative GABAergic mechanisms were studied in the cat retina by exogenous application of the GABAA antagonists picrotoxin (PTX), native bicuculline (BCC), and bicuculline methyl bromide (BCC MeBr). When recording intracellular responses from horizontal cells (HCs) and amacrine cells as well as electroretinograms (ERGs), drugs were added to the perfusate used to maintain the isolated eyecup; when recording extracellular spikes from ganglion cells of anesthetized cats, drugs were introduced by iontophoretic injection. Both PTX and BCC MeBr had relatively little influence upon the response properties of HCs. In contrast, native BCC tended to decrease the amplitude of and to slow the photic response to light onset and both to quicken and to increase the amplitude of response to light offset; in the presence of native BCC, HC responses were dominated by a prominent spike-like “Off-overshoot.” The influence of GABAA agonists upon HC responses was not blocked by GABAA antagonists. ERG b−wave amplitude was reduced both by PTX and by native BCC, but was not influenced by BCC MeBr. Latency (time to half-peak) was increased by low doses of native BCC, and to a lesser extent PTX but not BCC MeBr. Rod-amacrine On-transient responses were increased in amplitude by PTX. Extracellular recordings from On- and Off- X and Y ganglion cell types became considerably more transient with application of either PTX, native BCC, or BCC MeBr; this tendency was greater in Off-type ganglion cells. Collectively, these results strengthen conclusions from the previous paper suggesting that GABA serves to slow onset and offset kinetics of retinal neurons, making them more sustained and less phasic. They also suggest that in mammalian retina heterogeneous types of GABAA receptors exist, segregated into different zones: a distal zone, sensitive only to native BCC, a central zone sensitive to both native BCC and PTX, and a proximal zone sensitive to native BCC, BCC methyl halides (BCC MeH), and PTX. Only the proximal zone obeys conventional GABAA pharmacology.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3