Direct imaging of NMDA-stimulated nitric oxide production in the retina

Author:

BLUTE TODD A.,LEE MICHAEL R.,ELDRED WILLIAM D.

Abstract

In the retina, nitric oxide (NO) functions in network coupling, light adaptation, neurotransmitter receptor function, and synaptic release. Neuronal nitric oxide synthase (nNOS) is present in the retina of every vertebrate species investigated. However, although nNOS can be found in every retinal cell type, little is known about the production of NO in specific cells or about the diffusion of NO within the retina. We used diaminofluorescein-2 (DAF-2) to image real-time NO production in turtle retina in response to stimulation with N-methyl-D-aspartate (NMDA). In response to NMDA, NO was produced in somata in the ganglion cell and inner nuclear layers, in synaptic boutons and processes in the inner plexiform layer, in processes in the outer plexiform layer, and in photoreceptor inner segments. This NO-dependent fluorescence production quickly reached transient peaks and declined more slowly toward baseline levels at different rates in different cells. In some cases, the NO signal was primarily confined to within 10 μm of the source, which suggests that NO may not diffuse freely through the retina. Such limited spread was not predicted and suggests that NO signal transduction may be more selective than suggested, and that NO may play significant intracellular roles in cells that produce it. Because NO-dependent fluorescence within amacrine cells can be confined to the soma, specific dendritic sites, or both with distinct kinetics, NO may function at specific synapses, modulate gene expression, or coordinate events throughout the cell.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3