Type-specific photoreceptor loss in pigeons after disruption of parasympathetic control of choroidal blood flow by the medial subdivision of the nucleus of Edinger–Westphal

Author:

REINER A.,WONG T.T.,NAZOR C.C.,DEL MAR N.,FITZGERALD M.E.C.

Abstract

AbstractThe medial part of the nucleus of Edinger–Westphal (EWM) in birds mediates light-regulated adaptive increases in choroidal blood flow (ChBF). We sought to characterize the effect of loss of EWM-mediated ChBF regulation on photoreceptor health in pigeons housed in either moderate intensity diurnal or constant light (CL). Photoreceptor abundance following complete EWM destruction was compared to that following a lesion in the pupil control circuit (as a control for spread of EWM lesions to the nearby pupil-controlling lateral EW) or following no EW damage. Birds were housed post-lesion in a 12 h 400 lux light/12 h dark light cycle for up to 16.5 months, or in constant 400 lux light for up to 3 weeks. Paraformaldehyde–glutaraldehyde fixed eyes were embedded in plastic, sectioned, slide-mounted, and stained with toluidine blue/azure II. Blinded analysis of photoreceptor outer segment abundance was performed, with outer segment types distinguished by oil droplet tint and laminar position. Brains were examined histologically to assess lesion accuracy. Disruption of pupil control had no adverse effect on photoreceptor outer segment abundance in either diurnal light or CL, but EWM destruction led to 50–60% loss of blue/violet cone outer segments in both light conditions, and a 42% loss of principal cone outer segments in CL. The findings indicate that adaptive regulation of ChBF by the EWM circuit plays a role in maintaining photoreceptor health and mitigates the harmful effect of light on photoreceptors, especially short wavelength-sensitive cone photoreceptors.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3