Cyclic AMP has no effect on the generation, recovery, or background adaptation of light responses in functionally intact rod outer segments: With implications about the function of phosducin

Author:

JINDROVA HANA,DETWILER PETER B.

Abstract

In retinal rods, light exposure decreases the total outer segment content of both cGMP and cAMP by about 50%. The functional role of the light-evoked change in cAMP is not known. It is postulated to trigger changes in the phosphorylation state of phosducin, a phosphoprotein that is phosphorylated in the dark by cAMP-dependent protein kinase (PKA) and dephosphorylated by basal phosphatase activity when PKA is inhibited by the light-evoked drop in cAMP. In biochemical studies, dephosphorylated phosducin binds to free βγ dimer of transducin (Tβγ) and prevents the regeneration of heterotrimeric transducin by blocking the re-association of the βγ and α subunits. Phosducin's interaction with Tβγ is blocked when it is phosphorylated on a single residue by PKA. To evaluate the effect of the light-evoked fall in cAMP, functionally intact isolated lizard rod outer segments were dialyzed in whole-cell voltage clamp with a standard internal solution and electrical light responses were recorded with and without adding cAMP to the dialysis solution. Since the total outer segment content of cAMP in darkness is ∼5 μM, internal dialysis with solution containing a much higher concentration (100 μM) of cAMP (or 8-bromo-cAMP) will overcome the effects of a light-evoked decrease in its concentration by keeping cAMP-dependent processes fully activated. Neither cyclic nucleotide had any influence on the generation, light sensitivity, recovery, or background adaptation of the flash response. These results also argue against the participation of phosducin in the sequence of events that are responsible for these aspects of rod function. This does not exclude the possibility of phosducin being involved in adaptation caused by higher light levels than used in the present study, that is, bleaching adaptation, or in light-dependent processes other than phototransduction.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3