GABAAand GABACreceptor antagonists increase retinal cyclic GMP levels through nitric oxide synthase

Author:

YU DOU,ELDRED WILLIAM D.

Abstract

The nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signal transduction pathway plays a role in every retinal cell type. Previous studies have shown that excitatory glutamatergic synaptic pathways can increase cGMP-like immunoreactivity (cGMP-LI) in retina through stimulation of NO production, but little is known about the role of synaptic inhibition in the modulation of cGMP-LI. Gamma-amino-n-butyric acid (GABA) plays critical roles in modulating excitatory synaptic pathways in the retina. Therefore, we used GABA receptor antagonists to explore the role of GABAergic inhibitory synaptic pathways on the modulation of the NO/cGMP signal-transduction system. Cyclic GMP immunocytochemistry was used to investigate the effects of the GABA receptor antagonists bicuculline, picrotoxin, and (1,2,5,6-tetrahyropyridin-4-yl) methylphosphinic acid (TPMPA) on levels of cGMP-LI. Cyclic GMP-LI was strongly increased in response to the GABAAreceptor antagonist bicuculline, while the GABACreceptor antagonist TPMPA had little effect on cGMP-LI. The GABAA/GABACreceptor antagonist, picrotoxin, caused a moderate increase in cGMP-LI, which was mimicked by the combination of bicuculline and TPMPA. The nitric oxide synthase inhibitor, S-methyl-L-thiocitrulline (SMTC), blocked the increased cGMP-LI in response to stimulation with either bicuculline or picrotoxin. Treatments with either of the glutamate receptor antagonists (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) partially blocked the increases in cGMP-LI seen in response to bicuculline, but a combination of MK-801 and CNQX completely eliminated these increases. These results suggest that inhibitory synaptic pathways involving both types of GABA receptors work through excitatory glutamatergic receptors to regulate the NO/cGMP signal-transduction pathway in retina.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3