Author:
ROYER AUDREY S.,MILLER ROBERT F.
Abstract
We evaluated the contributions of somatic and dendritic impulses to the receptive field dimensions of amacrine cells in the amphibian retina. For this analysis, we used the NEURON simulation program with a multicompartmental, multichannel model of an On-Off amacrine cell with a three-dimensional structure obtained through computer tracing techniques. Simulated synaptic inputs were evenly spaced along the dendritic branches and organized into eight annuli of increasing radius. The first set of simulations activated each ring progressively to simulate an area summation experiment, while a second approach activated each annulus individually. Both sets of simulations were done with and without the presence of Na channels in the dendrites and soma. Unexpectedly, the receptive field dimensions observed in the area summation simulations was often smaller than that predicted from the summation of the annular simulations. Collisions of action potentials moving in opposite directions in the dendrites largely accounted for this contraction in receptive field size for the area summation studies. The presence of dendritic Na channels increased the size of the receptive field beyond that achieved in their absence and allowed the physiological size of the receptive field to approximate the physical dimensions of the dendritic tree. This receptive field augmentation was the result of impulse generating ability in the dendrites which enhanced the signal observed at the soma. These simulations provide a plausible mechanistic explanation for physiological recordings from amacrine cells that show similar phenomena.
Publisher
Cambridge University Press (CUP)
Subject
Sensory Systems,Physiology
Reference37 articles.
1. Rall, W. (1964).Theoretical significance of dendritic trees for neuronal input-output relations. InNeural Theory and Modeling, ed. Reiss, R.F. ,Stanford:Stanford University Press.
2. Fohlmeister, J.F. & Miller, R.F. (1997a).Mechanisms by which cell geometry controls repetitive impulse firing in retinal ganglion cells.Journal of Neurophysiology 78,1948–1964.
3. Dacheux, R.F. , Chimento, M.F. & Amthor, F.R. (2003).Synaptic input to the on-off directionally selective ganglion cell in the rabbit retina.Journal of Comparative Neurology 456,267–278.
4. Sandell, J.H. , Masland, R.H. , Raviola, E. & Dacheux, R.F. (1989).Connections of indoleamine-accumulating cells in the rabbit retina.Journal of Comparative Neurology 283,303–313.
5. Miller, R.F. & Bloomfield, S.A. (1983).Electroanatomy of a unique amacrine cell in the rabbit retina.Proceedings of the National Academy of Sciences of the United States of America 80,3069–3073.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献