A multivariate approach to structural heterogeneity of retinal ganglion cells

Author:

PUSHCHIN I.I.,PODUGOLNIKOVA T.A.,KONDRASHEV S.L.

Abstract

AbstractKnowing neuronal types is essential for understanding the structural and functional organization of the nervous system. It has long been recognized that neuronal types should be discovered and not defined. This can be done using cluster analysis (CA). Despite there being many studies using CA to classify neurons, only a few of them meet its formal prerequisites. In the present study, we provide an example of using CA in combination with other multivariate techniques for examining neuronal diversity. A special emphasis is put on formal prerequisites to the data and procedure. The data under scrutiny are a sample of ganglion cells projecting to the basal optic nucleus [accessory optic system-projecting ganglion cells (AOS GCs)] in the common frog. There is physiological evidence that these cells comprise at least two functional types but their structural heterogeneity has not been addressed. Cells were labeled with horseradish peroxidasein vivoand examined in whole-mounted retinae using light microscopy. A sample of well-stained cells was obtained and used to estimate 18 structural parameters. A variety of clustering algorithms were used to classify the cells. The joint polar distribution of dendrite mass was monomodal. CA did not reveal a statistically reliable cluster structure in the sample. The clusters were not cohesive and well isolated. ANOVA-on-Ranks revealed no significant between-cluster differences. Our formal conclusion is that functionally distinct frog AOS GCs do not differ in morphology or dendritic arbor orientation. The advantages and limitations of the adopted approach are discussed.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Retinal ganglion cells of the accessory optic system: A review;Journal of Integrative Neuroscience;2013-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3