Two-frequency analysis of interactions elicited by Vernier stimuli

Author:

VICTOR JONATHAN D.,CONTE MARY M.

Abstract

In five subjects, we measured visual evoked potentials (VEPs) elicited by Vernier targets in which the contrast of the two components of the stimuli were modulated by sinusoids at distinct frequencies f1 and f2. This approach allows for the extraction of VEP signatures of spatial interactions, namely, responses at intermodulation frequencies n1f1 + n2f2, without the need to introduce motion into the stimulus. The most prominent interactions were at the sum frequency f1 + f2, and, for frequency pairs that were sufficiently separated, the difference frequency f1f2. These responses had a systematic dependence on the temporal parameters of the stimulus, corresponding to an effective latency of 145 to 165 ms. Fourth-order interactions were also detected, particularly at the frequencies 2f1 ± 2f2. These VEP signatures of interaction were similar to interactions seen for colinear line segments separated by a gap. Thus, for Vernier stimuli devoid of motion, VEP signatures of interaction are readily detected but are not specific to hyperacuity displacements. The distribution of interactions across harmonic orders is consistent with local rectification preceding the spatial interactions. Their effective latencies and dependence on spatial parameters are consistent with interactions within V1 receptive fields or mediated by horizontal connections between cells with a similar orientation tuning within V1.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3