Light-induced Ca2+ release in the visible cones of the zebrafish

Author:

CILLUFFO MARIANNE C.,MATTHEWS HUGH R.,BROCKERHOFF SUSAN E.,FAIN GORDON L.

Abstract

We used suction-pipette recording and fluo-4 fluorescence to study light-induced Ca2+ release from the visible double cones of zebrafish. In Ringer, light produces a slow decrease in fluorescence which can be fitted by the sum of two decaying exponentials with time constants of 0.5 and 3.8 s. In 0Ca2+–0Na+ solution, for which fluxes of Ca2+ across the outer segment plasma membrane are greatly reduced, light produces a slow increase in fluorescence. Both the decrease and increase are delayed after incorporation of the Ca2+ chelator BAPTA, indicating that both are produced by a change in Ca2+. If the Ca2+ pool is first released by bright light in 0Ca2+–0Na+ solution and the cone returned to Ringer, the time course of Ca2+ decline is much faster than in Ringer without previous light exposure. This indicates that the time constants of 0.5 and 3.8 s actually reflect a sum of Na+/Ca2+-K+ exchange and light-induced release of Ca2+. The Ca2+ released by light appears to come from at least two sites, the first comprising 66% of the total pool and half-released by bleaching 4.8% of the pigment. Release of the remaining Ca2+ from the second site requires the bleaching of nearly all of the pigment. If, after release, the cone is maintained in darkness, a substantial fraction of the Ca2+ returns to the release pool even in the absence of pigment regeneration. The light-induced release of Ca2+ can produce a modulation of the dark current as large as 0.75 pA independently of the normal transduction cascade, though the rise time of the current is considerably slower than the normal light response. These experiments show that Ca2+ can be released within the cone outer segment by light intensities within the physiological range of photopic vision. The role this Ca2+ release plays remains unresolved.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3