Regulation of melatonin and dopamine biosynthesis in chick retina: The role of GABA

Author:

Kazula Arkadiusz,Nowak Jerzy Z.,Iuvone P. Michael

Abstract

AbstractMelatonin biosynthesis in chick retina occurs as a circadian rhythm. Biosynthesis of the neurohormone is highest at night in darkness, and is suppressed by light. The role of gamma-aminobutyric acid (GABA) in the nocturnal regulation of melatonin synthesis was examined. Systemic or intravitreal administration of muscimol, a GABA-A receptor agonist, to light-exposed chicks at the beginning of the dark phase of the light/dark cycle increased retinal melatonin levels and the activity of serotonin N-acetyltransferase (NAT), a key regulatory enzyme of the melatonin biosynthetic pathway. Baclofen, a GABA-B receptor agonist, also increased NAT activity of light-exposed retinas, but muscimol was approximately 40-fold more potent than baclofen. Effects of both muscimol and baclofen on NAT activity were inhibited by GABA-A antagonists, bicuculline and picrotoxin, and the effect of baclofen was unaffected by the GABA-B selective antagonist, CGP 35348. Thus, activation of GABA-A receptors appears to be associated with increased melatonin biosynthesis. The GABA-uptake inhibitor, nipecotic acid, and the GABA-transaminase inhibitor, aminooxyacetic acid, also increased NAT activity of light-exposed retinas. The high levels of NAT activity associated with exposure to darkness were unaffected by either muscimol or baclofen, but picrotoxin and bicuculline significantly inhibited retinal NAT activity in darkness.The rate of dopamine synthesis, estimated from in situ tyrosine hydroxylase activity, was higher in light-exposed retinas than in darkness. Muscimol inhibited dopamine synthesis in light, and picrotoxin stimulated dopamine synthesis in darkness. The stimulation of melatonin synthesis by muscimol in light-exposed retinas appears to be related to inhibition of retinal dopamine neurons. The increase of NAT activity elicited by muscimol in light-exposed retinas was inhibited by administration of the dopamine receptor agonists apomorphine and quinpirole. Blocking dopamine receptors with spiperone or inhibiting dopamine biosynthesis with α-methyl-ρ tyrosine also increased NAT activity in light, and the effects of the dopamine antagonists and muscimol were not additive. The decrease of NAT activity elicited by GABA antagonists in darkness was inhibited by spiperone. Thus, GABA may indirectly regulate retinal melatonin biosynthesis, by inhibiting dopaminergic activity in retina.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3